Awesome to see the similarities between: Newtonian Mechanics and Quantum mechanics
Coulomb’s law was essential to the development of the theory of electromagnetism and maybe even its starting point, as it allowed meaningful discussions of the amount of electric charge in a particle.
Here, ke is a constant, q1 and q2 are the quantit>ies of each charge, and the scalar r is the distance between the charges.
Being an inverse-square law, the law is similar to Isaac Newton’s inverse-square law of universal gravitation, but gravitational forces always make things attract, while electrostatic forces make charges attract or repel. Also, gravitational forces are much weaker than electrostatic forces. Coulomb’s law can be used to derive Gauss’s law, and vice versa. In the case of a single point charge at rest, the two laws are equivalent, expressing the same physical law in different ways. The law has been tested extensively, and observations have upheld the law on the scale from 10−16 m to 108 m.
“X depends on or is built up on Y” does not imply “X is Y”. Concepts, laws, techniques, etc. can depend or be higher-order expressions of QM without being QM. If you started asking a QM scientist about tensile strength or the Mohs scale they would (rightly) be confused.
Yes, of course. Coloumb and Maxwell had no idea about QM when they were developing their ideas. Not to mention that these higher-order abstractions are just as valid as QM (up to a point, but so is QM). Depening on the application, you’d want to use a different abstraction. EM is perfect for everyday use, as well as all the way down to the microscale.
My point is that EM is explained by QM, and therefore supercedes it. You could use QM to solve every EM problem, it’d just be waaaaay too difficult to be practical.
I feel like you’re using “supercede” differently to the rest of us. You’re getting a hostile reaction because it sounded like you’re saying that EM is no longer at all useful because it has been obsoleted (superceded) by QM. Now you’re (correctly) saying that EM is still useful within its domain, but continuing to say that QM supercedes it. To me, at least, that’s a contradiction. QM extends EM, but does not supercede it. If EM were supercedes, there would be no situation in which it was useful.
edit: fix similarities typo
Awesome to see the similarities between: Newtonian Mechanics and Quantum mechanics
It’s electromagnetism you mean, not quantum mechanics.
Guess what electromagnetism turned out to be
They’re different things. The OP means electromagnetism, Coulomb’s law has nothing to do with quantum mechanics, it’s classical physics.
Okay but tell me, what theory superceded electromagnetism?
Sure, EM is still useful, I use it in my work, but in the end, it all boils down to QM.
“X depends on or is built up on Y” does not imply “X is Y”. Concepts, laws, techniques, etc. can depend or be higher-order expressions of QM without being QM. If you started asking a QM scientist about tensile strength or the Mohs scale they would (rightly) be confused.
Yes, of course. Coloumb and Maxwell had no idea about QM when they were developing their ideas. Not to mention that these higher-order abstractions are just as valid as QM (up to a point, but so is QM). Depening on the application, you’d want to use a different abstraction. EM is perfect for everyday use, as well as all the way down to the microscale.
My point is that EM is explained by QM, and therefore supercedes it. You could use QM to solve every EM problem, it’d just be waaaaay too difficult to be practical.
I feel like you’re using “supercede” differently to the rest of us. You’re getting a hostile reaction because it sounded like you’re saying that EM is no longer at all useful because it has been obsoleted (superceded) by QM. Now you’re (correctly) saying that EM is still useful within its domain, but continuing to say that QM supercedes it. To me, at least, that’s a contradiction. QM extends EM, but does not supercede it. If EM were supercedes, there would be no situation in which it was useful.